
WYMAGANIA EDUKACYJNE

PRZEDMIOT: INFORMATYKA

POZIOM: KLASA 3

ZAKRES: ROZSZERZONY

Wymagania na oceny śródroczne (I półrocze) oraz na oceny roczne obejmują wymagania z działów:

I. Rozwiązywanie problemów z wykorzystaniem struktur danych

II. Metody algorytmiczne

III. Rozwiązywanie problemów z wykorzystaniem dynamicznych struktur danych

Wymagania na oceny śródroczne (I półrocze) obejmują wymagania z działów od I do II włącznie, zaś na oceny roczne obejmują wszystkie

wymagania z działów od I do III włącznie (cały rok szkolny).

1. Ustala się następujące progi procentowe na oceny bieżące:

▪ niedostateczny 0% – 39%

▪ dopuszczający 40% – 50%

▪ dostateczny 51% – 70%

▪ dobry 71% – 85%

▪ bardzo dobry 86% – 95%

▪ celujący 96% – 100%

2. Ocenie podlegają następujące obszary aktywności uczniów:

▪ praca na lekcji,

▪ prace pisemne (sprawdziany, kartkówki, zadanie domowe),

▪ wypowiedzi ustne (materiał bieżący),

▪ praca indywidualna i grupowa,

▪ projekt edukacyjny,

▪ prezentacje multimedialne,

▪ działania pozalekcyjne.

3. Zakłada się stosowanie następujących form sprawdzania wiadomości i umiejętności uczniów:

▪ sprawdzian,

▪ test,

▪ kartkówka (zapowiedziana, niezapowiedziana),

▪ odpowiedź ustna,

▪ praca na lekcji, praca w grupie,

▪ zadanie domowe,

▪ aktywność na lekcji.

4. Informacje o sprawdzaniu wiadomości i umiejętności z materiału bieżącego:

▪ materiał bieżący obejmuje trzy ostatnie lekcje,

▪ wiadomości i umiejętności sprawdzane są w następujący sposób:

a. odpowiedź ustna,

b. odpowiedź pisemna, zadanie praktyczne,

c. kartkówka – zapowiedziana i niezapowiedziana,

▪ można korzystać z „numerków szczęścia”,

▪ z „numerków szczęścia” nie korzystają uczniowie, którzy posiadają godziny nieusprawiedliwione w poprzednim miesiącu,

▪ „numerki szczęścia” nie obowiązują na zapowiedzianej kartkówce,

▪ osoby nieobecne podczas kartkówki zapowiedzianej są zobowiązane do jej nadrobienia – termin ustalony z nauczycielem,

▪ w przypadku stwierdzenia niesamodzielnego rozwiązywania zadań podczas kartkówki nauczyciel ma prawo unieważnić pracę, co jest

równoważne z wystawieniem oceny niedostatecznej.

5. Informacje o sprawdzianach:
▪ sprawdzian może być poprzedzony jest lekcją powtórzeniową,

▪ sprawdzian jest zapowiadany co najmniej tydzień przed terminem, a informacja o nim jest odnotowana w dzienniku lekcyjnym,

▪ nie przekłada się sprawdzianów,

▪ osoby nieobecne podczas sprawdzianu są zobowiązane do jego uzupełnienia w terminie ustalonym z nauczycielem (wyjątek: osoby, które

były przez dłuższy czas nieobecne w szkole [np. 2 tygodnie] i nie zdążyły nadrobić materiału, a uzyskały zgodę nauczyciela uczącego na

pisanie w innym terminie),

▪ prace pisemne (sprawdziany, testy itp.) oddawane są w terminie do 21 dni,

▪ każda ocena ze sprawdzianu może być poprawiana w ustalonym terminie,

▪ prace pisemne są przechowywane przez nauczyciela; uczeń i jego rodzice mają możliwość wglądu do prac pisemnych,

▪ kartkówki nie podlegają poprawie,

▪ uczeń jest zobowiązany przygotować się do lekcji z 3 ostatnich tematów,

▪ uczeń może dwa razy na semestr skorzystać z „nieprzygotowania” i nie być brany pod uwagę przy wyborze do odpowiedzi ustnej,

▪ uczeń może uzyskiwać za aktywność na lekcji „plusy”. Po zebraniu odpowiedniej liczby plusów uczeń otrzymuje ocenę celującą

z aktywności,

▪ w przypadku stwierdzenia niesamodzielnego rozwiązywania zadań podczas sprawdzianu nauczyciel ma prawo unieważnić pracę, co jest

równoważne z wystawieniem oceny niedostatecznej.

6. O podwyższenie przewidywanej rocznej oceny klasyfikacyjnej z zajęć edukacyjnych może ubiegać się uczeń, który:

a. Przystępował do wszystkich przewidzianych przez nauczyciela sprawdzianów i prac pisemnych

b. Skorzystał ze wszystkich oferowanych przez nauczyciela form poprawy

Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z

informatyki w klasie trzeciej

Dopuszczający – 2 Dostateczny – 3 Dobry - 4 Bardzo dobry - 5 Celujący - 6

Rozwiązywanie problemów z wykorzystaniem struktur danych
Uczeń:
• wypisuje liczby pierwsze z
zadanego przedziału, stosując
metodę sita Eratostenesa,
• wyszukuje w ciągu liczb spójne
podciągi (nierosnący, niemalejący,
stały), wskazuje najdłuższe, oblicza
ich sumę,

Uczeń:
• omawia algorytm zliczania
znaków w tekście oraz wyszukujący
maksimum z wykorzystaniem
tablic,
• przedstawia w postaci listy
kroków algorytmy sortowania
prostego (bąbelkowe, przez
wybieranie) oraz szybkiego i przez
scalanie, określa operacje
dominujące,
• implementuje w języku Python
algorytmy rekurencyjne: obliczanie
elementów ciągu Fibonacciego,
wartości silni i potęgi,
• omawia rozszerzony algorytm
Euklidesa,
• formułuje algorytm wydawania
reszty minimalną liczbą monet,
znajdowania drogi metodami
zachłanną i dynamiczną,

Uczeń:
• implementuje w języku Python
algorytm zliczania znaków w
tekście oraz wyszukujący
maksimum z wykorzystaniem
tablic,
• implementuje w języku Python
algorytmy wyszukujące spójne
podciągi o różnych cechach,

Uczeń:
• stosuje zaawansowane funkcje
środowiska i języka
programowania (np. z
dodatkowych modułów)
• optymalizuje program realizujący
algorytm sita Eratostenesa i
szacuje jego złożoność czasową,
• wyszukuje spójne podciągi w
plikach tekstowych, stosując
optymalne algorytmy (w tym
programowanie dynamiczne),
wyjaśnia ich działanie,
• pisze programy wyszukujące
lidera i idola w zbiorze,
optymalizuje je, szacuje złożoność
czasową,

Uczeń:
• stosuje zaawansowane
algorytmy i struktury danych do
wyszukiwania spójnych podciągów,

Metody algorytmiczne
• wyjaśnia, na czym polega
metoda „dziel i zwyciężaj”,
• wczytuje dane z pliku
tekstowego, zapisuje wyniki w
pliku,
• omawia algorytmy wyszukiwania
liczby w zbiorach

• implementuje w języku Python
algorytmy wyszukiwania liniowego
i liniowego z
wartownikiem, porównuje ich
efektywność,

• stosuje algorytmy sortowania
szybkiego i przez scalanie,
• stosuje metodę zachłanną w
programach – problem kasjera,
wyszukiwanie drogi,
• porównuje algorytmy iteracyjne i
rekurencyjne (liczbę

• pisze program wyszukujący
jednocześnie minimum i
maksimum w zbiorze z
wykorzystaniem metody
„dziel i zwyciężaj” oraz podaje
wzór na liczbę wykonywanych
operacji,

• implementuje w języku Python
algorytm wyszukiwania
binarnego w wersji rekurencyjnej,
• pisze programy sortujące dane
różnego typu w plikach tekstowych
(liczby, napisy, pary),

uporządkowanym i
nieuporządkowanym,
• stosuje funkcję losującą w
tworzonych programach,
• omawia metody sortowania
prostego (bąbelkowe, przez
wybieranie) oraz szybkiego i przez
scalanie na przykładowych danych,
• definiuje pojęcia iteracji i
rekurencji,
• omawia zasadę złotego podziału,
• opisuje rozszerzony algorytm
Euklidesa,
• omawia metody zachłanne na
przykładzie problemu kasjera,
harmonogramu sali, porównuje
metody zachłanną i dynamiczną,

wykonywanych operacji), szacuje
ich złożoność czasową,

• szacuje złożoność obliczeniową
programów sortujących,
modyfikuje funkcje sortujące,
zmieniając porządek sortowania,
• wykorzystuje poznane algorytmy
do rozwiązywania problemów
nieomawianych na lekcjach,
• pisze programy obliczające liczbę
operacji przenoszenia krążków w
problemie wież Hanoi, stosując
iterację i rekurencję,
• do implementacji rozszerzonego
algorytmu Euklidesa stosuje
zarówno iterację, jak i rekurencję,
• stosuje metody zachłanną i
dynamiczną w problemach kasjera
i wyszukiwania drogi, wskazuje
wady i zalety obu metod, szacuje
złożoność czasową,

• stosuje zaawansowane
algorytmy wyszukiwania, np.
najlepszego wyboru (trwałych par),
stosując rekurencję,
• pisze programy obliczające liczbę
operacji przenoszenia krążków w
problemie wież Hanoi, stosując
iterację i rekurencję,

Rozwiązywanie problemów z wykorzystaniem dynamicznych struktur danych
• pisze programy o
niewielkim stopniu
trudności,
• wyjaśnia, co to jest notacja
infiksowa, notacja prefiksowa,
odwrotna notacja polska, drzewo
wyrażenia algebraicznego,
• definiuje pojęcie dynamicznej
struktury danych,
• definiuje dynamiczne struktury
danych takie jak: stos, kolejka, lista
• definiuje graf, wymienia
elementy i rodzaje grafów,
wymienia sposoby reprezentacji
grafu (macierz sąsiedztwa, lista
sąsiedztwa),

• wyróżnia operacje, które
można wykonywać na
dynamicznych strukturach danych
(stosie, kolejce, liście),
• omawia zastosowanie
dynamicznych struktur danych na
różnych przykładach,
• zapisuje wyrażenia algebraiczne
bez użycia nawiasów, w tym w
postaci odwrotnej notacji polskiej,
• oblicza wartość wyrażenia
arytmetycznego zapisanego w
odwrotnej notacji polskiej,
• omawia algorytmy znajdowania
wyjścia z labiryntu z
wykorzystaniem iteracji i
rekurencji,

• pisze programy o różnym
stopniu trudności, szacuje
ich efektywność,
• dobiera typy danych do
rozwiązania problemu,
• do przeglądania grafu stosuje
algorytm przeszukiwania w głąb
(DFS) oraz algorytm
przeszukiwania grafu wszerz (BFS),
• omawia algorytm Dijkstry,

• charakteryzuje sytuacje
algorytmiczne, proponuje
sposoby ich rozwiązania,
• pisze programy o podwyższonym
stopniu trudności: rozwiązuje
zadania oznaczone trzema
gwiazdkami w podręczniku,
• optymalizuje rozwiązania,
• stosuje zaawansowane funkcje
środowiska i języka
programowania,
• dobiera struktury danych i
metody do rodzaju problemu,
• szacuje złożoność algorytmów,
• implementuje algorytmy grafowe
– BFS, DFS, algorytm Dijkstry,
• w reprezentacji liczb
rzeczywistych w komputerze

• charakteryzuje
skomplikowane sytuacje
algorytmiczne, proponuje
optymalne rozwiązanie sytuacji
problemowej z zastosowaniem
złożonych struktur danych,
• pisze programy o wysokim
stopniu trudności: z olimpiad
przedmiotowych, konkursów
informatycznych,
optymalizuje programy, szacuje ich
efektywność
• wykorzystuje poznane algorytmy
do rozwiązywania problemów
nieomawianych na lekcjach, np.
sprawdzanie spójności grafu,

• omawia algorytm przeszukiwania
grafu w głąb (DFS),
• omawia algorytm przeszukiwania
grafu wszerz (BFS),
• wyjaśnia, do czego służy
algorytm Dijkstry,
• wyjaśnia różnicę między
przekazywaniem parametrów do
funkcji przez wartość i przez
referencję,

stosuje reprezentację stało- lub
zmiennoprzecinkową zgodnie ze
specyfikacją algorytmu,
minimalizując błędy w
obliczeniach,

