
WYMAGANIA EDUKACYJNE

PRZEDMIOT: INFORMATYKA

POZIOM: KLASA 2

ZAKRES: ROZSZERZONY

Wymagania na oceny śródroczne (I półrocze) oraz na oceny roczne obejmują wymagania z działów:

I. Arkusz Kalkulacyjny

II. Algorytmy na liczbach całkowitych i tekstach

III. Rozwiązywanie problemów z wykorzystaniem struktur danych

Wymagania na oceny śródroczne (I półrocze) obejmują wymagania z działów od I do II włącznie, zaś na oceny roczne obejmują wszystkie

wymagania z działów od I do III włącznie (cały rok szkolny).

1. Ustala się następujące progi procentowe na oceny bieżące:

▪ niedostateczny 0% – 39%

▪ dopuszczający 40% – 50%

▪ dostateczny 51% – 70%

▪ dobry 71% – 85%

▪ bardzo dobry 86% – 95%

▪ celujący 96% – 100%

2. Ocenie podlegają następujące obszary aktywności uczniów:

▪ praca na lekcji,

▪ prace pisemne (sprawdziany, kartkówki, zadanie domowe),

▪ wypowiedzi ustne (materiał bieżący),

▪ praca indywidualna i grupowa,

▪ projekt edukacyjny,

▪ prezentacje multimedialne,

▪ działania pozalekcyjne.

3. Zakłada się stosowanie następujących form sprawdzania wiadomości i umiejętności uczniów:

▪ sprawdzian,

▪ test,

▪ kartkówka (zapowiedziana, niezapowiedziana),

▪ odpowiedź ustna,

▪ praca na lekcji, praca w grupie,

▪ zadanie domowe,

▪ aktywność na lekcji.

4. Informacje o sprawdzaniu wiadomości i umiejętności z materiału bieżącego:

▪ materiał bieżący obejmuje trzy ostatnie lekcje,

▪ wiadomości i umiejętności sprawdzane są w następujący sposób:

a. odpowiedź ustna,

b. odpowiedź pisemna, zadanie praktyczne,

c. kartkówka – zapowiedziana i niezapowiedziana,

▪ można korzystać z „numerków szczęścia”,

▪ z „numerków szczęścia” nie korzystają uczniowie, którzy posiadają godziny nieusprawiedliwione w poprzednim miesiącu,

▪ „numerki szczęścia” nie obowiązują na zapowiedzianej kartkówce,

▪ osoby nieobecne podczas kartkówki zapowiedzianej są zobowiązane do jej nadrobienia – termin ustalony z nauczycielem,

▪ w przypadku stwierdzenia niesamodzielnego rozwiązywania zadań podczas kartkówki nauczyciel ma prawo unieważnić pracę, co jest

równoważne z wystawieniem oceny niedostatecznej.

5. Informacje o sprawdzianach:
▪ sprawdzian może być poprzedzony jest lekcją powtórzeniową,

▪ sprawdzian jest zapowiadany co najmniej tydzień przed terminem, a informacja o nim jest odnotowana w dzienniku lekcyjnym,

▪ nie przekłada się sprawdzianów,

▪ osoby nieobecne podczas sprawdzianu są zobowiązane do jego uzupełnienia w terminie ustalonym z nauczycielem (wyjątek: osoby, które

były przez dłuższy czas nieobecne w szkole [np. 2 tygodnie] i nie zdążyły nadrobić materiału, a uzyskały zgodę nauczyciela uczącego na

pisanie w innym terminie),

▪ prace pisemne (sprawdziany, testy itp.) oddawane są w terminie do 21 dni,

▪ każda ocena ze sprawdzianu może być poprawiana w ustalonym terminie,

▪ prace pisemne są przechowywane przez nauczyciela; uczeń i jego rodzice mają możliwość wglądu do prac pisemnych,

▪ kartkówki nie podlegają poprawie,

▪ uczeń jest zobowiązany przygotować się do lekcji z 3 ostatnich tematów,

▪ uczeń może dwa razy na semestr skorzystać z „nieprzygotowania” i nie być brany pod uwagę przy wyborze do odpowiedzi ustnej,

▪ uczeń może uzyskiwać za aktywność na lekcji „plusy”. Po zebraniu odpowiedniej liczby plusów uczeń otrzymuje ocenę celującą

z aktywności,

▪ w przypadku stwierdzenia niesamodzielnego rozwiązywania zadań podczas sprawdzianu nauczyciel ma prawo unieważnić pracę, co jest

równoważne z wystawieniem oceny niedostatecznej.

6. O podwyższenie przewidywanej rocznej oceny klasyfikacyjnej z zajęć edukacyjnych może ubiegać się uczeń, który:

a. Przystępował do wszystkich przewidzianych przez nauczyciela sprawdzianów i prac pisemnych

b. Skorzystał ze wszystkich oferowanych przez nauczyciela form poprawy

Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z

informatyki w klasie drugiej

Dopuszczający – 2 Dostateczny – 3 Dobry - 4 Bardzo dobry - 5 Celujący - 6

Arkusz kalkulacyjny
Uczeń:
• wprowadza dane różnego typu
do arkusza kalkulacyjnego,
• omawia zastosowania
korespondencji seryjnej,
• wyjaśnia relacje w bazach
danych.

Uczeń:
• pobiera dane do arkusza
kalkulacyjnego ze źródeł
zewnętrznych,
• filtruje dane w arkuszu
kalkulacyjnym,
• tworzy różne wykresy w arkuszu
kalkulacyjnym w zależności od
rodzaju danych,
• bierze udział w projektach
informatycznych jako członek
zespołu.

Uczeń:
• przeprowadza analizę danych
zgromadzonych w arkuszu
kalkulacyjnym,
• omawia błąd zaokrąglenia i błąd
przybliżenia w obliczeniach
komputerowych,
• dobiera środowisko
informatyczne do rodzaju
rozwiązywanego problemu,
• wyszukuje informacje
zgromadzone w bazach danych,
• w bazach danych wykorzystuje
kwerendy, filtrowanie

Uczeń:
• wykorzystuje zaawansowane
formuły, opracowując dane w
arkuszu kalkulacyjnym,
• stosuje funkcje zaokrąglające
liczby,
• korzysta z możliwości obliczeń
walutowych,

Uczeń:
• wykorzystuje narzędzia do
prognozowania wyników

Algorytmy na liczbach całkowitych i tekstach
• definiuje podstawowe pojęcia z
algorytmiki i programowania:
algorytm, program, warunek,
iteracja, rekurencja,
• wymienia sposoby reprezentacji
algorytmów,
• korzysta ze środowiska
programistycznego: pisze w nim
kod, uruchamia program,
odczytuje i zapisuje pliki,
• pisze programy o niewielkim
stopniu trudności,
• omawia pojęcia: złożoność
obliczeniowa algorytmu, algorytm
naiwny, algorytm optymalny,
złożoność pesymistyczna,
złożoność oczekiwana (średnia),

• przedstawia krótkie algorytmy w
postaci listy kroków, opisu
słownego, pseudokodu,
• dodaje liczby binarne,
• konwertuje liczby między
pozycyjnymi systemami
liczbowymi,
• wykonuje działania arytmetyczne
na liczbach w systemach
liczbowych o różnych podstawach,
• przedstawia liczby w kodzie U2,
• definiuje pojęcie zdania
logicznego, charakteryzuje
podstawowe operacje logiczne
(koniunkcja, alternatywa, negacja)
oraz operatory logiczne,

• określa specyfikację algorytmu
(dane, wynik),
• pisze programy o różnym stopniu
trudności, szacuje ich efektywność,
• przedstawia omawiane
algorytmy w postaci opisu
słownego, listy kroków,
pseudokodu,
• dobiera typy danych do realizacji
problemu,
• pisze programy konwertujące
liczby między systemem
dziesiętnym i binarnym,
• implementuje w języku Python
algorytmy wykonujące działania
arytmetyczne na liczbach w
różnych systemach,

• charakteryzuje sytuacje
algorytmiczne, proponuje sposoby
ich rozwiązania,
• pisze programy o podwyższonym
stopniu trudności
• optymalizuje rozwiązania,
• pisze programy konwertujące
liczby między różnymi systemami
pozycyjnymi,
• w programach wykonujących
działania na liczbach w różnych
systemach pozycyjnych
wykorzystuje typ string i
strukturalne typy danych,
• wykorzystuje rozwinięcie binarne
liczby dziesiętnej w algorytmie
szybkiego podnoszenia do potęgi,

• charakteryzuje skomplikowane
sytuacje algorytmiczne, proponuje
optymalne rozwiązanie sytuacji
problemowej z zastosowaniem
złożonych struktur danych
• pisze programy o wysokim
stopniu trudności: z olimpiad
przedmiotowych, konkursów
informatycznych lub oznaczone
trzema gwiazdkami w podręczniku,
• wyszukuje palindromy lub
anagramy w plikach tekstowych,
• tworzy palindromy z napisów,
dopisując minimalną liczbę
znaków,

• korzysta z podstawowych funkcji
języka: operacji wejścia i wyjścia,
instrukcji warunkowych i
iteracyjnych, gotowych funkcji
bibliotecznych,
• wymienia podstawowe typy
danych, operacje arytmetyczne i
logiczne,
• definiuje pojęcie systemów
liczbowych,
• wyjaśnia, czym jest tablica kodów
ASCII,
• wymienia systemy liczbowe
używane w informatyce,
• konwertuje liczby między
systemami binarnym i
decymalnym,
• dodaje pisemnie liczby binarne,
• wyjaśnia, czym są palindrom i
anagram, podaje przykłady,
• podaje definicje liczby pierwszej i
liczby złożonej,
• implementuje w języku Python
algorytm zliczający dzielniki danej
liczby,
• omawia geometryczną
interpretację algorytmu Euklidesa,

• pisze programy wykonujące
działania na liczbach całkowitych,
• korzysta typu string do operacji
na łańcuchach znaków,
• wykonuje operacje na napisach,
wykorzystując odpowiednie
metody
• tworzy algorytmy sprawdzające,
czy napis jest palindromem,
• wyjaśnia różnicę między
parametrami formalnym i
aktualnym, a także między
zmiennymi lokalną i globalną,
 • implementuje w języku Python
algorytm naiwny sprawdzający, czy
liczba jest pierwsza,
• implementuje w języku Python
algorytm Euklidesa w wersjach z
dzieleniem i odejmowaniem,

• w algorytmach zamiany
wykorzystuje zależności między
systemami binarnym, ósemkowym
i heksadecymalnym,
• omawia sposób reprezentacji
obrazów w komputerze,
korzystając z takich pojęć jak:
piksel, model RGB, kanał alfa,
• wyjaśnia, na czym polega
digitalizacja(dyskretyzacja)
dźwięku,
• wyjaśnia zasadę tworzenia
animacji,
• implementuje w języku Python
algorytmy sprawdzające, czy napis
jest palindromem,
• implementuje w języku Python i
optymalizuje algorytm
sprawdzający, czy liczba jest
pierwsza,
• pisze program rozkładający liczby
na czynniki pierwsze,
• stosuje w programach algorytm
Euklidesa do obliczenia NWD i
NWW,
• wykorzystuje algorytm Euklidesa
do działań na ułamkach,
• szyfruje dane wczytane z pliku
tekstowego,
• zapisuje w postaci programu
rozszerzony algorytm Euklidesa,
wyjaśnia jego działanie i
zastosowanie,

• wykonuje operacje arytmetyczne
na liczbach w różnych systemach,
implementuje je w języku Python,
• stosuje różne sposoby
przekazywania parametrów do
funkcji, uzasadnia ich użycie,
• pisze funkcje typu logicznego, np.
sprawdzającą, czy napis jest
palindromem,
• szyfruje dane wczytane z pliku z
uwzględnieniem polskich znaków
diakrytycznych,
• pisze program odczytujący
informację ukrytą za pomocą
szyfru Cezara z wykorzystaniem
analizy częstości znaków w tekście,
• wykorzystuje algorytm Euklidesa
do działań na ułamkach, stosując
struktury lub pary

• pisze program rozkładający liczbę
złożoną na dwie liczby pierwsze
(hipoteza Goldbacha),
• implementuje w języku Python
algorytm Euklidesa, stosując
iterację i rekurencję,
• pisze programy szyfrujące i
deszyfrujące z wykorzystaniem
zaawansowanych szyfrów
(np. permutacyjny lub Vigenere’a) i
różnych kluczy,

Rozwiązywanie problemów z wykorzystaniem struktur danych
• w pisanych programach korzysta
ze strukturalnych typów danych:
napisów, struktur, list,
• definiuje pojęcia: kryptologia,
kryptografia,kryptoanaliza, tekst
jawny, klucz, szyfrogram,

• przedstawia w postaci algorytmu
problem wyszukiwania
anagramów,
• przy pisaniu programów stosuje
własne funkcje

• stosuje różne sposoby
przekazywania parametrów do
funkcji: przez wartość, referencję
lub wskaźnik,

• dobiera struktury danych i
metody do rodzaju problemu,
• sprawdza, czy napisy są
anagramami, stosując sortowanie
lub zliczanie znaków,

• stosuje w programach algorytmy
sortowania inne niż omawiane na
lekcjach (np. heapsort),
• w projektach zespołowych
przyjmuje rolę lidera

• rozróżnia szyfry podstawieniowe
i przestawieniowe,
• omawia szyfr Cezara jako
przykład szyfru podstawieniowego
• wyjaśnia, na czym polega
łamanie szyfru,
• omawia algorytm zliczania
znaków w tekście,

• pisze program szyfrujący napis
szyfrem Cezara,
• omawia algorytm sita
Eratostenesa,
• przedstawia algorytmy
znajdowania spójnych podciągów,
wyznaczania najdłuższego z nich
oraz podciągu o największej sumie
elementów

• pisze programy sprawdzające czy
dwa napisy są anagramami,
wykorzystując funkcję sort z
• stosuje algorytm wyszukiwania
binarnego i oszacowuje jego
złożoność czasową,
• pisze programy sortujące
metodami prostymi z
zastosowaniem funkcji
• pisze program realizujący
algorytm sita Eratostenesa,

• przy testowaniu liczby na
pierwszość stosuje funkcję typu
logicznego,
• wyszukuje liczby bliźniacze,

