
WYMAGANIA EDUKACYJNE 

PRZEDMIOT: INFORMATYKA 

POZIOM: KLASA 2 

ZAKRES: PODSTAWOWY 

Wymagania na oceny śródroczne (I półrocze) oraz na oceny roczne obejmują wymagania z działów:  

I. Tworzenie treści internetowych 

II. Relacyjne bazy danych 

III. Algorytmika i programowanie w języku C++/Python 

 

Wymagania na oceny śródroczne (I półrocze) obejmują wymagania z działów od I do II włącznie, zaś na oceny roczne obejmują wszystkie 

wymagania z działów od I do III włącznie (cały rok szkolny). 

 
 

1. Ustala się następujące progi procentowe na oceny bieżące: 

▪ niedostateczny   0% – 39% 

▪ dopuszczający   40% – 50% 

▪ dostateczny    51% – 70% 

▪ dobry      71% – 85% 

▪ bardzo dobry   86% – 95% 

▪ celujący     96% – 100% 

 

2. Ocenie podlegają następujące obszary aktywności uczniów: 

▪ praca na lekcji, 

▪ prace pisemne (sprawdziany, kartkówki, zadanie domowe), 

▪ wypowiedzi ustne (materiał bieżący), 

▪ praca indywidualna i grupowa, 

▪ projekt edukacyjny, 

▪ prezentacje multimedialne, 

▪ działania pozalekcyjne. 

 

 



3. Zakłada się stosowanie następujących form sprawdzania wiadomości i umiejętności uczniów: 

▪ sprawdzian, 

▪ test, 

▪ kartkówka (zapowiedziana, niezapowiedziana), 

▪ odpowiedź ustna, 

▪ praca na lekcji, praca w grupie, 

▪ zadanie domowe, 

▪ aktywność na lekcji. 
 

4. Informacje o sprawdzaniu wiadomości i umiejętności z materiału bieżącego: 

▪ materiał bieżący obejmuje trzy ostatnie lekcje, 

▪ wiadomości i umiejętności sprawdzane są w następujący sposób: 

a. odpowiedź ustna,  

b. odpowiedź pisemna, zadanie praktyczne, 

c. kartkówka – zapowiedziana i niezapowiedziana, 

▪ można korzystać z „numerków szczęścia”, 

▪ z „numerków szczęścia” nie korzystają uczniowie, którzy posiadają godziny nieusprawiedliwione w poprzednim miesiącu, 

▪ „numerki szczęścia” nie obowiązują na zapowiedzianej kartkówce, 

▪ osoby nieobecne podczas kartkówki zapowiedzianej są zobowiązane do jej nadrobienia – termin ustalony z nauczycielem, 

▪ w przypadku stwierdzenia niesamodzielnego rozwiązywania zadań podczas kartkówki nauczyciel ma prawo unieważnić pracę, co jest 

równoważne z wystawieniem oceny niedostatecznej. 
 

5. Informacje o sprawdzianach: 

▪ sprawdzian może być poprzedzony jest lekcją powtórzeniową, 

▪ sprawdzian jest zapowiadany co najmniej tydzień przed terminem, a informacja o nim jest odnotowana w dzienniku lekcyjnym, 

▪ nie przekłada się sprawdzianów, 

▪ osoby nieobecne podczas sprawdzianu są zobowiązane do jego uzupełnienia w terminie ustalonym z nauczycielem (wyjątek: osoby, które 

były przez dłuższy czas nieobecne w szkole [np. 2 tygodnie] i nie zdążyły nadrobić materiału, a uzyskały zgodę nauczyciela uczącego na 

pisanie w innym terminie), 

▪ prace pisemne (sprawdziany, testy itp.) oddawane są w terminie do 21 dni, 

▪ każda ocena ze sprawdzianu może być poprawiana w ustalonym terminie, 

▪ prace pisemne są przechowywane przez nauczyciela; uczeń i jego rodzice mają możliwość wglądu do prac pisemnych, 

▪ kartkówki nie podlegają poprawie, 

▪ uczeń jest zobowiązany przygotować się do lekcji z 3 ostatnich tematów, 

▪ uczeń może dwa razy na semestr skorzystać z „nieprzygotowania” i nie być brany pod uwagę przy wyborze do odpowiedzi ustnej, 

▪ uczeń może uzyskiwać za aktywność na lekcji „plusy”. Po zebraniu odpowiedniej liczby plusów uczeń otrzymuje ocenę celującą 

z aktywności, 



▪ w przypadku stwierdzenia niesamodzielnego rozwiązywania zadań podczas sprawdzianu nauczyciel ma prawo unieważnić pracę, co jest 

równoważne z wystawieniem oceny niedostatecznej. 

6. O podwyższenie przewidywanej rocznej oceny klasyfikacyjnej z zajęć edukacyjnych może ubiegać się uczeń, który: 

a. Przystępował do wszystkich przewidzianych przez nauczyciela sprawdzianów i prac pisemnych  

b. Skorzystał ze wszystkich oferowanych przez nauczyciela form poprawy 

  



Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z 

informatyki w klasie drugiej 

 

Nowa informatyka na czasie 2, zakres podstawowy 

Wymagania na poszczególne oceny 

dopuszczający dostateczny dobry bardzo dobry celujący 

2 3 4 5 6 

I. TWORZENIE TREŚCI INTERNETOWYCH 

Uczeń: 

− zapisuje plik, nadając mu 

rozszerzenie .html, 

− rozróżnia sekcje HEAD 

i BODY oraz opisuje 

różnicę między tymi 

częściami kodu,   

− wymienia podstawowe 

znaczniki formatowania 

tekstu w języku HTML, 

− opisuje budowę znacznika 

HTML,   

− wyjaśnia pojęcie 

responsywności strony 

WWW,   

− uruchamia stronę WWW. 

− rozumie model działania 

aplikacji do wizualnego 

generowania stron 

i systemów zarządzania 

treścią CMS, 

− potrafi zbudować prostą 

stronę w aplikacji do 

wizualnego generowania 

stron, 

− opracowuje interesujące 

treści internetowe 

dostosowane do potrzeb 

Uczeń: 

− rozumie i rozróżnia 

podstawowe elementy składni 

języka HTML, 

− opisuje podstawową strukturę 

strony w języku HTML,  

ꟷ tworzy nagłówki w języku 

HTML,    

− wstawia komentarze w kodzie 

HTML,   

− tworzy listy uporządkowane 

i nieuporządkowane,  

− rozumie cel pozycjonowania 

stron WWW, 

ꟷ korzysta z legalnych źródeł 

do pozyskiwania treści i 

materiałów dla tworzonych 

stron WWW, 

− potrafi przetestować 

w przeglądarce internetowej 

stronę WWW zbudowaną za 

pomocą aplikacji, 

− montuje materiały 

wykorzystując specjalistyczne 

oprogramowanie (np. Stream 

z pakietu Office 365), 

Uczeń: 

− umieszcza zdjęcia na stronie 

WWW,   

− tworzy linki do zasobów 

zewnętrznych oraz miejsc 

w obrębie jednej strony,    

− poprawnie i na różne 

sposoby korzysta z opisu 

kolorów w języku HTML 

ꟷ korzysta z różnych 

przeglądarek internetowych. 

− potrafi w prostym narzędziu 

tekstowym poprawnie 

zapisać podstawowe 

znaczniki, w tym stosować 

hiperłącza, 

− biegle potrafi tworzyć 

i modyfikować znaczniki 

z rozbudowanymi 

atrybutami, 

− potrafi stosować grafikę, 

tabele i inne elementy 

w odniesieniu do 

responsywności strony 

internetowej, 

− potrafi weryfikować 

legalność pozyskiwanych 

Uczeń: 

−  korzysta ze ścieżek 

względnych i bezwzględnych 

w kodzie HTML,   

ꟷ poprawnie tworzy tabele 

o dowolnej strukturze, 

− dołącza style kaskadowe do 

dokumentu HTML,    

− tworzy ciekawą stronę WWW 

i publikuje ją w internecie, 

−  rozumie pojęcia tabeli, listy 

i stylów oraz potrafi 

modyfikować przygotowane 

wcześniej kody źródłowe 

zawierające wskazane 

pojęcia, 

− testuje działanie strony 

WWW na różnych 

urządzeniach (komputer, 

smartfon), 

− tworzy podcasty i publikacje 

wideo na wybrane tematy, 

wymagające dużego nakładu 

pracy (np. promocja czy 

jubileusz szkoły, szkolny 

festiwal kultury lub nauki) 

lub korzysta 

z zaawansowanych narzędzi,  

Uczeń: 

− tworzy style opisujące 

wygląd strony WWW,  

− dodaje do strony elementy 

odpowiedzialne za jej 

responsywność,    

− buduje stronę 

z wykorzystaniem systemu 

CMS i publikuje ją 

w Internecie, 

− tworzy stronę z tabelami, 

elementami graficznymi, 

− potrafi przetestować działanie 

napisanego kodu strony 

WWW w przeglądarce 

internetowej, 

− potrafi tworzyć i stosować 

arkusze stylów, 

− potrafi stworzyć złożoną 

stronę, sterowaną 

zaprojektowanym menu i ją 

opublikować oraz 

przetestować na różnych 

urządzeniach (komputer, 

smartfon), 

− rozumie, na czym polega 

zaawansowane zarządzanie 

treścią w systemach CMS, 



potencjalnych odbiorców, 

wykorzystując zasadę 5W, 

− występuje przed kamerą 

i mikrofonem, przekazuje 

treści w sposób atrakcyjny 

dla odbiorców, utrzymuje 

ich uwagę, 

− uczestniczy w pracach 

zespołu i rozumie, jakie 

zadania wykonują 

poszczególni członkowie, 

ꟷ dba o ochronę prawa 

autorskiego publikowanych 

treści. 

− wykazuje się kreatywnością 

w zakresie projektowania 

strony internetowej. 

materiałów dla swojej 

strony internetowej, 

− dba o identyfikację 

wizualną, korzysta 

z narzędzi graficznych 

i multimedialnych do 

wzbogacania treści,  

− potrafi wykonać proste 

zadanie w zakresie 

przygotowania treści 

i zadanie techniczne 

w zakresie ich publikacji. 

− potrafi współdziałać 

w zespole w zakresie 

projektowania i tworzenia 

strony internetowej, 

− skutecznie weryfikuje 

możliwości wykorzystania 

materiałów pod kątem praw 

autorskich, ochrony 

informacji oraz danych 

osobowych. 

− wykonuje zadania 

o podwyższonym stopniu 

trudności, oznaczone trzema 

gwiazdkami w podręczniku, 

− potrafi wykonać 

zaawansowane zadania 

techniczne. 

II. RELACYJE BAZY DANYCH 

Uczeń: 

− wyjaśnia podstawowe 

pojęcia związane z bazami 

danych: tabela, atrybut, 

rekord, pole, klucz główny, 

klucz obcy, relacja, 

− projektuje proste bazy 

danych, operuje 

w podstawowym zakresie 

poznanymi na lekcji 

narzędziami programu MS 

Access. 

− wymienia różne 

zastosowania baz danych. 

Uczeń: 

− projektuje proste bazy 

danych,    

− operuje w podstawowym 

zakresie programem MS 

Access, 

− tworzy bazy danych 

w programie MS Access,  

− pomaga innym członkom 

grupy w wykonaniu ich 

zadań, 

− projektuje nieduże bazy 

danych. 

Uczeń: 

− zarządza danymi w bazie 

danych w programie MS 

Access,   

− tworzy tabele i raporty 

w bazie danych i definiuje 

relacje między nimi,  

− podaje przykłady baz 

danych, w których podczas 

projektowania należy 

uwzględnić relacje typu: 

jeden do jednego, jeden do 

wielu, wiele do wielu, 

− modyfikuje dane zawarte 

w bazie danych, dodaje 

nowe atrybuty i określa typ 

danych w Widoku projektu, 

ꟷ tworzy tabele i definiuje 

relacje między nimi. 

Uczeń: 

− pomaga w pracach innym 

uczestnikom projektu 

zespołowego,   

− tworzy formularze, 

kwerendy, drukuje 

i eksportuje raporty do 

plików w programie MS 

Access, 

−  tworzy rozbudowane bazy 

danych, zawierające relacje 

typu: jeden do jednego, jeden 

do wielu, wiele do wielu, 

− modyfikuje bazy danych, 

poszerzając ich zastosowania. 

Uczeń: 

− stosuje różne narzędzia do 

tworzenia relacyjnych baz 

danych, 

− projektuje rozbudowane bazy 

danych,  

− tworzy maski wprowadzenia. 

 

  



ꟷ  ALGORYTMIKA I PROGRAMOWANIE W JĘZYKU C++/PYTHON 

Uczeń: 

− wyjaśnia podstawowe 

pojęcia: algorytm, lista 

kroków, kod źródłowy, kod 

wynikowy, translator, 

kompilator, interpreter, 

słowa kluczowe, instrukcja, 

zmienna, operator 

przypisania, 

− wymienia cechy 

poprawnego algorytmu, 

tworzy proste algorytmy, 

− wyjaśnia na przykładzie 

pojęcie specyfikacji 

problemu, 

− podaje przykłady 

algorytmów spotykanych 

w codziennym życiu,  

− zapisuje algorytm 

z warunkami w postaci listy 

kroków,  

− zapisuje algorytm 

z warunkami w wybranym 

języku programowania,  

− wyjaśnia na przykładach 

pojęcia iteracji i pętli, 

− tworzy programy 

wykorzystujące zmienne 

całkowitoliczbowe,  

− zapisuje dwucyfrową liczbę 

dziesiętną w systemie 

binarnym,  

− wyjaśnia pojęcia: NWD, 

NWW, 

Uczeń: 

− wymienia zasady tworzenia 

kodu źródłowego 

w wybranym języku 

programowania, 

− stosuje podstawowe 

konstrukcje wybranego 

języka programowania: 

instrukcje wejścia i wyjścia, 

instrukcje warunkowe oraz 

pętle, 

− zapisuje algorytm w postaci 

kodu źródłowego, 

−  uruchamia zapisany kod 

źródłowy, 

− omawia przynajmniej dwie 

cechy poprawnego algorytmu, 

− zapisuje wybrane algorytmy 

za pomocą kodu źródłowego, 

− używa zmiennych różnych 

typów,  

− stosuje instrukcje wejścia 

i wyjścia,  

− stosuje instrukcje iteracyjne 

w postaci listy kroków,  

− zapisuje dwa rodzaje pętli,  

− stosuje w programach pętle, 

zapisuje liczbę dziesiętną 

w systemie binarnym,  

− zapisuje w postaci dziesiętnej 

liczby binarne,  

− wyjaśnia pojęcia: liczby 

pierwsze i liczby złożone, 

Uczeń: 

−  znajduje błędy w kodzie 

źródłowym programu na 

podstawie informacji 

zwrotnych z kompilatora,  

− tworzy program 

sprawdzający warunek 

trójkąta, 

ꟷ posługuje się  
w programowaniu strukturą 

tablicy lub listy,  

− buduje algorytmy 

sprawdzające podzielność 

jednej liczby przez drugą, 

ꟷ bada podzielność liczb  
z użyciem języka 

programowania, 

− omawia wybraną metodę 

sprawdzania, czy liczba jest 

pierwsza, 

− zapisuje wybraną metodę 

sprawdzania pierwszości 

w postaci funkcji języka 

programowania, 

− tworzy program realizujący 

algorytm Euklidesa w wersji 

z dodawaniem,  

− tworzy program 

komputerowy dodający 

ułamki, 

− zapisuje liczby w systemie 

liczbowym: dziesiętnym, 

binarnym, ósemkowym 

i szesnastkowym, 

Uczeń: 

ꟷ samodzielnie tworzy 

programy komputerowe  
w wybranym języku 

programowania do 

rozwiązywania zadań 

matematycznych  
i fizycznych 

ꟷ optymalnie wykorzystuje 

różne rodzaje pętli  
w tworzonych programach,  

ꟷ analizuje i poprawia błędy  
w kodach źródłowych 

programów napisanych przez 

inne osoby,  

ꟷ omawia poznane na lekcjach 

algorytmy i uzasadnia, 

dlaczego spełniają cechy 

dobrych algorytmów,  

ꟷ tworzy samodzielnie 

programy z wykorzystaniem 

poznanych na lekcjach 

algorytmów, również  
z użyciem funkcji,  

− wyjaśnia pojęcia liczb 

doskonałych, bliźniaczych, 

zaprzyjaźnionych,  

− tworzy programy realizujące 

działania na ułamkach, 

ꟷ zapisuje w kodzie programu 

wywołania funkcji, również 

w instrukcji wyjścia, 

ꟷ wyjaśnia pojęcie składni 

i błędu składniowego, 

znajduje  

Uczeń: 

− ilustruje pojęcie sprawności 

(efektywności) algorytmu na 

przykładach,   

− rozwiązuje różne zadania 

przy użyciu własnych 

algorytmów i programów 

komputerowych,   

− tworzy algorytmy i programy 

komputerowe do konwersji 

między systemami 

liczbowymi,   

ꟷ wykonuje działania na 

ułamkach za pomocą 

własnych programów 

komputerowych,   

ꟷ omawia pojęcie zasięgu 

zmiennych  
w programowaniu 

− tworzy samodzielnie 

programy, wykorzystując 

poznane instrukcje 

wybranego języka 

programowania, 

− stosuje w swoich programach 

zagnieżdżone instrukcje 

warunkowe, 

− pisze programy rozwiązujące 

zadania matematyczne 

i fizyczne oraz problemy 

z napisami, 

ꟷ zapisuje algorytm konwersji 

między systemami 

liczbowymi w postaci 

programu komputerowego, 



− omawia na przykładzie 

działanie algorytmu 

Euklidesa. 

− przedstawia metodę 

sprawdzania, czy liczba jest 

pierwsza,  

− bada podzielność liczb 

− zapisuje algorytm Euklidesa, 

− definiuje liczby złożone 

i liczby pierwsze oraz 

podstawowe twierdzenie 

arytmetyki, 

− podaje przykłady użycia liczb 

pierwszych, 

− omawia rozkład liczb na 

czynniki pierwsze, 

− omawia algorytmy 

sprawdzające podzielność 

liczb. 

− wyjaśnia pojęcia: system 

pozycyjny, podstawa 

systemu liczbowego, 

dzielenie całkowite, reszta 

z dzielenia, 

− omawia algorytm konwersji 

liczb między systemami 

dziesiętnym i binarnym, 

− definiuje pojęcia: 

porządkowanie 

(sortowanie), wyszukiwanie 

sekwencyjne 

i wyszukiwanie binarne 

(połówkowe), 

− wyjaśnia znaczenie 

uporządkowania danych 

w procesie wyszukiwania, 

− wskazuje operacje kluczowe 

w algorytmach sortowania. 

i poprawia błędy w kodzie 

źródłowym programu,  

ꟷ bada podzielność wybranych 

liczb, programując poznane 

algorytmy w wybranym 

języku, 

ꟷ grupuje instrukcje w funkcje 

i wyjaśnia cel stosowania 

funkcji, 

− tworzy samodzielnie 

programy dla poznanych 

algorytmów, 

− pisze programy 

wykorzystujące poznane 

rodzaje liczb pierwszych, 

− wyjaśnia praktyczne 

znaczenie liczb pierwszych 

w informatyce. 

ꟷ stosuje operację dzielenia 

całkowitego  
w rozwiązywaniu 

problemów, 

− tworzy algorytmy konwersji 

między różnymi systemami 

liczbowymi, 

− programuje algorytmy 

konwersji między różnymi 

systemami liczbowymi, 

stosując strukturę listy. 

− wykorzystuje strukturalne 

typy danych (listy) do 

przechowywania danych, 

stosuje pętle zagnieżdżone, 

− omawia oraz implementuje 

algorytm sortowania 

bąbelkowego (prostej 

zamiany) i przez wstawianie, 

zarówno nierosnąco, jak 

i niemalejąco, szacuje liczbę 

porównań oraz zamian 

w każdym z nich, 

− tworzy samodzielnie program 

sortujący z użyciem 

wartownika, 

− wykonuje zadania 

o podwyższonym stopniu 

trudności, 

− stosuje algorytmy sortowania 

o mniejszej złożoności 

czasowej (szybkie, przez 

scalanie). 

 

 

Ocenę niedostateczną otrzymuje uczeń, który: 

• nie opanował podstawowych wiadomości i umiejętności niezbędnych do dalszego zdobywania wiedzy, 



• nie rozwiązuje najprostszych zadań, 

• nie wykazuje zainteresowania treściami prezentowanymi na lekcjach, nie rozwiązuje ćwiczeń, zadań domowych, 

• otrzymuje cząstkowe oceny niedostateczne, których nie poprawia. 

 
Podział ze względu na tematy: 

Numer lekcji Temat Liczba godzin Zapisy podstawy programowej 

Rozdział 1. Tworzenie treści internetowych 

1 Tworzenie stron internetowych 3 II.2, II.3.f, III.2, III.3, V.1 

2 Wizualne tworzenie stron internetowych 2 II.2, II.3.f. II.4, III.2, III.3, V.1 

3 Sztuka publikowania w sieci 3 II.3.a, II.3.b, II.3.e, II.4, III.2, III.3, IV.4, V.1 

Rozdział 2. Relacyjne bazy danych 

4 Projektowanie bazy danych 2 I.1, II.2, II.3.d 

5 Tworzenie bazy danych 3 I.1, II.2, II.3.d 

Rozdział 3. Algorytmika i programowanie w języku C++/Python 

6 Od problemu do programu 4 I.1, I.3, II.1, II.2 

7 Systemy liczbowe 3 I.1, I.2.a, I.3, II.1, II.2 

8 Liczby pierwsze 3 I.1, I.2.a, I.3, II.1, II.2 

9 Sortowanie liczb i wyszukiwanie 3 I.1, I.2.c, I.3, II.1, II.2 

10 Tworzenie własnej strony internetowej – projekt zespołowy 4 II.3.a, II.3.e, II.3.f, II.4, III.2, III.3, IV.1, IV.5, V.1, V.4 

Suma godzin 30 

 


